If $R$ is the set of all real numbers, what do the cartesian products $R \times R$ and $R \times R \times R$ represent?
The Cartesian product $R \times R$ represents the set $R \times R =\{(x, y): x, y \in R \}$ which represents the coordinates of all the points in two dimensional space and the cartesian product $R \times R \times R$ represents the set $R \times R \times R =\{(x, y, z): x, y, z \in R \}$ which represents the coordinates of all the points in three-dimensional space.
If two sets $A$ and $B$ are having $99$ elements in common, then the number of elements common to each of the sets $A \times B$ and $B \times A$ are
The solution set of $8x \equiv 6(\bmod 14),\,x \in Z$, are
State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly.
If $A$ and $B$ are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs $(x, y)$ such that $x \in A$ and $y \in B.$
If $(1, 3), (2, 5)$ and $(3, 3)$ are three elements of $A × B$ and the total number of elements in $A \times B$ is $6$, then the remaining elements of $A \times B$ are
The Cartesian product $A$ $\times$ $A$ has $9$ elements among which are found $(-1,0)$ and $(0,1).$ Find the set $A$ and the remaining elements of $A \times A$.