જો $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right),$ તો $x$ અને $y$ શોધો.
It is given that $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$
Since the ordered pairs are equal, the corresponding elements will also be equal.
Therefore, $\frac{x}{3}+1=\frac{5}{3}$ and $y-\frac{2}{3}=\frac{1}{3}$
$\frac{x}{3}+1=\frac{5}{3}$
$\Rightarrow \frac{x}{3}=\frac{5}{3}-1 \quad y-\frac{2}{3}=\frac{1}{3}$
$\Rightarrow \frac{x}{3}=\frac{2}{3} \Rightarrow y=\frac{1}{3}+\frac{2}{3}$
$\Rightarrow x=2 \Rightarrow y=1$
$\therefore x=2$ and $y=1$
જો $A=\{1,2\}$ અને $B=\{3,4\}$ તો $A \times B$ લખો. $A \times B$ ને કેટલા ઉપગણો હશે ? તે તમામ ઉપગણોની યાદી બનાવો. છે.
જો $A = \{ 1,\,2,\,3,\,4\} $; $B = \{ a,\,b\} $ અને $f:A \to B$, તો $A \times B$ મેળવો.
જો $A=\{1,2,3\}, B=\{3,4\}$ અને $C=\{4,5,6\},$ તો શોધો. $A \times(B \cup C)$
નીચે આપેલાં વિધાનોમાંથી કયું વિધાન સત્ય છે અને કયું વિધાન અસત્ય છે તે જણાવો તથા અસત્ય વિધાન સત્ય બને તે રીતે ફરી લખો : જો $P=\{m, n\}$ અને $Q=\{n, m\},$ તો $P \times Q=\{(m, n),(n, m)\}.$
જો $A, B$ અને $C$ એ ત્રણ ગણ હોય તો $A × (B \cup C)$ મેળવો.