If $P,Q$ and $R$ are subsets of a set $A$, then $R × (P^c \cup Q^c)^c =$
$(R × P) \cap (R × Q)$
$(R \times Q) \cup (R \times P)$
$(R \times P) \cup (R \times Q)$
None of these
Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$A \times(B \cap C)$
State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly.
If $P=\{m, n\}$ and $Q=\{n, m\},$ then $P \times Q=\{(m, n),(n, m)\}.$
If two sets $A$ and $B$ have $99$ elements in common, then the number of elements common to the sets $A \times B$ and $B \times A$ is equal to
The solution set of $8x \equiv 6(\bmod 14),\,x \in Z$, are
Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$(A \times B) \cap(A \times C)$