3 and 4 .Determinants and Matrices
medium

यदि $A$ तथा $B$ सममित आव्यूह हैं तो सिद्ध कीजिए कि $AB - BA$ एक विषम सममित आव्यूह है।

Option A
Option B
Option C
Option D

Solution

It is given that $A$ and $B$ are symmetric matrices. Therefore, we have :

$A=A$ and $B^{\prime}=B$    …….. $(1)$

Now, $(A B-B A)=(A B)-(B A)$                     $\left[(A-B)^{\prime}=A^{\prime}-B^{\prime}\right]$

$=B ^{\prime}A^{\prime}-A B^{\prime}$                    $\left[(A B)^{\prime}=B^{\prime} A^{\prime}\right]$

$=BA-A B$                                   $[$ Using $(1)]$

$=-(A B-B A)$

$\therefore(A B-B A)^{\prime}=-(A B-B A)$

Thus, $(A B-B A)$ is a skew – symmetric matrix.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.