If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup C$
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$B \cap C$
If $A, B$ and $C$ are any three sets, then $A -(B \cup C)$ is equal to
If $A = \{2, 3, 4, 8, 10\}, B = \{3, 4, 5, 10, 12\}, C = \{4, 5, 6, 12, 14\}$ then $(A \cap B) \cup (A \cap C)$ is equal to
Sets $A$ and $B$ have $3$ and $6$ elements respectively. What can be the minimum number of elements in $A \cup B$