ધારો કે $A :\{1,2,3,4,5,6,7\}$. ગણ $B =\{ T \subseteq A$ : $1 \notin T$ અથવા $2 \in T \}$ મુજબ છે અને ગણ $C = \{ T \subseteq A : T$ કે જેથી ગણ $T$ ના બધા ઘટકોનો સરવાળો અવિભાજ્ય છે $\}$. તો ગણ $B \cup C$ ના ઘટકોનો સંખ્યા $\dots\dots$ થાય.
જો $n(A) = 3$, $n(B) = 6$ અને $A \subseteq B$. તો $A \cup B$ માં રહેલ ઘટકો મેળવો.
કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે સાબિત કરો કે, $A=(A \cap B) \cup(A-B)$ અને $A \cup(B-A)=(A \cup B).$
સાબિત કરો કે જો $A \cup B=A \cap B$ હોય, તો $A=B$.
છેદગણ શોધો : $X=\{1,3,5\} Y=\{1,2,3\}$