If $X$ and $Y$ are two sets such that $n( X )=17, n( Y )=23$ and $n( X \cup Y )=38$
find $n( X \cap Y )$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that:

$n(X)=17, n(Y)=23, n(X \cup Y)=38$

We know that:

$n(X \cup Y)=n(X)+n(Y)-n(X \cap Y)$

$\therefore 38=17+23-n(X \cap Y)$

$\Rightarrow n(X \cap Y)=40-38=2$

$\therefore n(X \cap Y)=2$

Similar Questions

Let $A=\{1,2,3,4,5,6\}, B=\{2,4,6,8\} .$ Find $A-B$ and $B-A$

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$A-D$

State whether each of the following statement is true or false. Justify you answer.

$\{a, e, i, o, u\}$ and $\{a, b, c, d\}$ are disjoint sets.

Let $A = \{a, b, c\}, B = \{b, c, d\}, C = \{a, b, d, e\},$ then $A \cap (B \cup C)$ is

Consider the sets $X$ and $Y$ of $X = \{ $ Ram , Geeta, Akbar $\} $ and $Y = \{ $ Geeta, David, Ashok $\} $ Find $X \cap Y$