3 and 4 .Determinants and Matrices
medium

यदि $A=\left(\begin{array}{cc}0 & \sin \alpha \\ \sin \alpha & 0\end{array}\right)$ तथा $\operatorname{det}\left(A^{2}-\frac{1}{2} I\right)=0$, है, तो $\alpha$ का एक संभव मान है

A

$\frac{\pi}{2}$

B

$\frac{\pi}{3}$

C

$\frac{\pi}{4}$

D

$\frac{\pi}{6}$

(JEE MAIN-2021)

Solution

$A^{2}=\sin ^{2} \alpha I$

So, $\left| A ^{2}-\frac{ I }{2}\right|=\left(\sin ^{2} \alpha-\frac{1}{2}\right)^{2}=0$

$\Rightarrow \sin \alpha=\pm \frac{1}{\sqrt{2}}$

$\alpha=$ $\frac{\pi}{4}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.