- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
medium
यदि $A=\left(\begin{array}{cc}0 & \sin \alpha \\ \sin \alpha & 0\end{array}\right)$ तथा $\operatorname{det}\left(A^{2}-\frac{1}{2} I\right)=0$, है, तो $\alpha$ का एक संभव मान है
A
$\frac{\pi}{2}$
B
$\frac{\pi}{3}$
C
$\frac{\pi}{4}$
D
$\frac{\pi}{6}$
(JEE MAIN-2021)
Solution
$A^{2}=\sin ^{2} \alpha I$
So, $\left| A ^{2}-\frac{ I }{2}\right|=\left(\sin ^{2} \alpha-\frac{1}{2}\right)^{2}=0$
$\Rightarrow \sin \alpha=\pm \frac{1}{\sqrt{2}}$
$\alpha=$ $\frac{\pi}{4}$
Standard 12
Mathematics