यदि $A , B , C$ किसी यादृच्च्छक प्रयोग के संगत तीन घटनाएँ हों तो सिद्ध कीजिए कि
$P ( A \cup B \cup C )= P ( A )+ P ( B )+ P ( C )- P ( A \cap B )- P ( A \cap C )$
$-P(B \cap C)+P(A \cap B \cap C)$
Consider $E = B \cup C$ so that
$P ( A \cup B \cup C ) = P ( A \cup E )$
$= P ( A )+ P ( E )- P ( A \cap E )$ ...... $(1)$
Now
$P ( E )= P ( B \cup C )$
$= P ( B )+ P ( C )- P ( B \cap C )$ ......... $(2)$
Also $A \cap E=A \cap(B \cup C)$ $=(A \cap B) \cup(A \cap C)$ [using distribution property of intersection of sets over the union]. Thus
$P(A \cap E)=P(A \cap B)+P(A \cap C)$ $-P[(A \cap B) \cap(A \cap C)]$
$= P ( A \cap B )+ P ( A \cap C )- P [ A \cap B \cap C ] $ ......... $(3)$
Using $(2)$ and $( 3 )$ in $(1)$, we get
$P [ A \cup B \cup C ]= P ( A )+ P ( B )$ $+ P ( C )- P ( B \cap C )$ $- P ( A \cap B )- P ( A \cap C )$ $+ P ( A \cap B \cap C )$
यदि $P ( A )=\frac{3}{5}, P ( B )=\frac{1}{5}$ और $A$ तथा $B$ स्वतंत्र घटनाएँ हैं तो $P ( A \cap B )$ ज्ञात कीजिए।
मान लें $A$ तथा $B$ स्वतंत्र घटनाएँ हैं और $P ( A )=\frac{1}{2}$ तथा $P ( B )=\frac{7}{12}$ और $P ( A$ -नहीं और $B$ -नहीं $)=\frac{1}{4}$. क्या $A$ और $B$ स्वतंत्र घटनाएँ हैं?
एक संस्था के कर्मचारियों में से $5$ कर्मचारियों का चयन प्रबंध समिति के लिए किया गया है। पाँच कर्मचारियों का ब्योरा निम्नलिखित है
क्रम. | नाम | लिंग | आयु ( वर्षो में ) |
$1.$ | हरीश | $M$ | $30$ |
$2.$ | रोहन | $M$ | $33$ |
$3.$ | शीतल | $F$ | $46$ |
$4.$ | ऐलिस | $F$ | $28$ |
$5.$ | सलीम | $M$ | $41$ |
इस समूह से प्रवक्ता पद के लिए यादृच्छ्या एक व्यक्ति का चयन किया गया। प्रवक्ता के पुरुष या $35$ वर्ष से अधिक आयु का होने की क्या प्रायिकता है ?
यदि $P(B) = \frac{3}{4}$, $P(A \cap B \cap \bar C) = \frac{1}{3}{\rm{ }}$ तथा $P(\bar A \cap B \cap \bar C) = \frac{1}{3},$ तब $P(B \cap C)$ का मान है
घटनाएँ $A$ और $B$ इस प्रकार हैं कि $P ( A )=0.42, P ( B )=0.48$ और $P ( A$ और $B )=0.16 .$ ज्ञात कीजिए
$P ( B-$ नहीं)