यदि $A , B , C$ किसी यादृच्च्छक प्रयोग के संगत तीन घटनाएँ हों तो सिद्ध कीजिए कि

$P ( A \cup B \cup C )= P ( A )+ P ( B )+ P ( C )- P ( A \cap B )- P ( A \cap C )$

$-P(B \cap C)+P(A \cap B \cap C)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Consider $E = B \cup C$ so that

$P ( A \cup B \cup C ) = P ( A \cup E )$

$= P ( A )+ P ( E )- P ( A \cap E )$                ...... $(1)$

Now

$P ( E )= P ( B \cup C )$

$= P ( B )+ P ( C )- P ( B \cap C )$               ......... $(2)$

Also $A \cap E=A \cap(B \cup C)$ $=(A \cap B) \cup(A \cap C)$   [using distribution property of intersection of sets over the union]. Thus

$P(A \cap E)=P(A \cap B)+P(A \cap C)$ $-P[(A \cap B) \cap(A \cap C)]$

$= P ( A \cap B )+ P ( A \cap C )- P [ A \cap B \cap C ] $        ......... $(3)$

Using $(2)$ and $( 3 )$ in $(1)$, we get

$P [ A \cup B \cup C ]= P ( A )+ P ( B )$ $+ P ( C )- P ( B \cap C )$ $- P ( A \cap B )- P ( A \cap C )$ $+ P ( A \cap B \cap C )$

Similar Questions

दो गेंद एक बॉक्स से बिना प्रतिस्थापित किए निकाली जाती है। बॉक्स में $10$ काली और $8$ लाल गेदें हैं तो प्रायिकता ज्ञात कीजिए एक काली तथा दूसरी लाल हो।

तीन धावक $A, B, C$ एक दौड़ प्रतियोगिता में भाग लेते हैं। $A$ और $B$ के जीतने की प्रायिकता $C$ के जीतने की प्रायिकता से दुगुनी है। दौड़ $A$ या $B$ द्वारा जीते जीने की प्रायिकता है

यदि $A$ तथा $B$ घटनायें इस प्रकार हैं कि $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ तब $P(\bar A \cap B) =$

  • [AIEEE 2002]

एक प्रश्न को तीन विद्यार्थियों के द्वारा हल करने की प्रायिकता क्रमश: $\frac{1}{2},\,\,\frac{1}{4},\,\,\frac{1}{6}$ है, तब प्रश्न हल हो जायेगा, इस बात की प्रायिकता होगी

$A$ तथा $B$ दो ऐसी घटनाएँ हैं कि $P(A) = 0.4$ , $P\,(A + B) = 0.7$,$P\,(AB) = 0.2,$ तो $P\,(B) = $