दो विद्यार्थियों अनिल और आशिमा एक परीक्षा में प्रविष्ट हुए। अनिल के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.05$ है और आशिमा के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.10$ है। दोनों के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.02$ है। प्रायिकता ज्ञात कीजिए कि
दोनों में से कम से कम एक परीक्षा में उत्तीर्ण नहीं होगा।
Let $E$ and $F$ denote the events that Anil and Ashima will qualify the examination, respectively. Given that
$P(E)=0.05$, $P(F)=0.10$ and $P(E \cap F)=0.02$
Then
$P$ (atleast one of them will not qualify)
$=1- P$ (both of them will qualify)
$=1-0.02=0.98$
घटनाओं $A$ व $B$ में से कम से कम एक के घटने की प्रायिकता $0.6$ है। यदि $A$ व $B$ एक साथ घटित होती हैं जिसकी प्रायिकता $0.3$ हैं, तो $P(A') + P(B')$ का मान है
दो घटनाओं $A$ और $B$ को परस्पर स्वतंत्र कहते हैं, यदि
एक थैले में $5$ सफेद व $4$ काली गेंदें हैं तथा दूसरे थैले में $7$ सफेद व $9$ काली गेंदे हैैं। एक गेंद पहले थैले में से दूसरे थैले में रख दी जाती है और तब दूसरे थैले में से एक गेंद निकाली जाती है तो उसके सफेद होने की प्रायिकता है
$52$ पत्तों की एक गड्डी में से यादृच्छया बिना प्रतिस्थापित किए गए दो पत्ते निकाले गए। दोनों पत्तों के काले रंग का होने की प्रायिकता ज्ञात कीजिए।
यदि $P(A) = 0.25,\,\,P(B) = 0.50$ तथा $P(A \cap B) = 0.14,$ तब $P(A \cap \bar B) =$