यदि $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}$ एवं $P(A \cap B) = \frac{7}{{12}},$ तो $P\,(A' \cap B')$ का मान है
$\frac{7}{{12}}$
$\frac{3}{4}$
$\frac{1}{4}$
$\frac{1}{6}$
यदि दो घटनाओं में $P(A \cup B) = 5/6$, $P({A^c}) = 5/6$, $P(B) = 2/3,$ तब $A$ तथा $B$ होंगी
माना $A$ और $B$ दो स्वतंत्र घटनायें हैं। दोनों के एक साथ होने की प्रायिकता $1/6$ और दोनों के न होने की प्रायिकता $1/3$ है, तब $A$ के होने की प्रायिकता है
निम्नलिखित सारणी में खाली स्थान भरिए:
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$\frac {1}{3}$ | $\frac {1}{5}$ | $\frac {1}{15}$ | ........ |
यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A \cup B)\, + P\,(A \cap B) = \frac{7}{8}$ तथा $P\,(A) = 2\,P\,(B),$ तो $P\,(A) = $
ताश के $52$ पत्तों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छया निकाला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ $E$ और $F$ स्वतंत्र हैं?
$E$ : 'निकाला गया पत्ता काले रंग का है'
$F :$ 'निकाला गया पत्ता एक बादशाह है'