If $a, b, c, d$ are in $G.P.,$ prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in $G.P.$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $a, b, c$ and $d$ are in $G.P.$

$\therefore b^{2}=a c$       ........$(1)$

$c^{2}=b d$       ........$(2)$

$a d=b c$       ........$(3)$

It has to be proved that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in $G.P.$ i.e.,

$\left(b^{n}+c^{n}\right)^{2}=\left(a^{n}+b^{n}\right),\left(c^{n}+d^{n}\right)$

Consider $L.H.S.$

$\left(b^{n}+c^{n}\right)^{2}=b^{2 n}+2 b^{n} c^{n}+c^{2 n}$

$=\left(b^{2}\right)^{n}+2 b^{n} c^{n}+\left(c^{2}\right)^{n}$

$=(a c)^{n}+2 b^{n} c^{n}+(b d)^{n}$            [ Using $(1)$ and $(2)$ ]

$=a^{n} c^{n}+b^{n} c^{n}+b^{n} c^{n}+b^{n} d^{n}$

$=a^{n} c^{n}+b^{n} c^{n}+a^{n} d^{n}+b^{n} d^{n}$         [ Using $(3)$ ]

$=c^{n}\left(a^{n}+b^{n}\right)+d^{n}\left(a^{n}+b^{n}\right)$

$=\left(a^{n}+b^{n}\right)\left(c^{n}+d^{n}\right)=$ $\mathrm{R.H.S.}$

$\therefore\left(b^{n}+c^{n}\right)^{2}=\left(a^{n}+b^{n}\right)\left(c^{n}+d^{n}\right)$

Thus, $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),$ and $\left(c^{n}+d^{n}\right)$ are in $G.P.$

Similar Questions

The ratio of sum of $m$ and $n$ terms of an $A.P.$ is ${m^2}:{n^2}$, then the ratio of ${m^{th}}$ and ${n^{th}}$ term will be

Find the $7^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=\frac{n^{2}}{2^{n}}$

If $b + c,$ $c + a,$ $a + b$ are in $H.P.$, then $\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}$ are in

Let $S_n$ and  $s_n$ deontes the sum of first $n$ terms of two different $A.P$. for which $\frac{{{s_n}}}{{{S_n}}} = \frac{{3n - 13}}{{7n + 13}}$ then  $\frac{{{s_n}}}{{{S_{2n}}}}$

The sum of the first $20$ terms common between the series $3 +7 + 1 1 + 15+ ... ......$ and $1 +6+ 11 + 16+ ......$, is

  • [JEE MAIN 2014]