यदि $a, b, c, d$ गुणोत्तर श्रेणी में हैं, तो सिद्ध कीजिए कि $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ गुणोत्तर श्रेणी में हैं।
It is given that $a, b, c$ and $d$ are in $G.P.$
$\therefore b^{2}=a c$ ........$(1)$
$c^{2}=b d$ ........$(2)$
$a d=b c$ ........$(3)$
It has to be proved that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in $G.P.$ i.e.,
$\left(b^{n}+c^{n}\right)^{2}=\left(a^{n}+b^{n}\right),\left(c^{n}+d^{n}\right)$
Consider $L.H.S.$
$\left(b^{n}+c^{n}\right)^{2}=b^{2 n}+2 b^{n} c^{n}+c^{2 n}$
$=\left(b^{2}\right)^{n}+2 b^{n} c^{n}+\left(c^{2}\right)^{n}$
$=(a c)^{n}+2 b^{n} c^{n}+(b d)^{n}$ [ Using $(1)$ and $(2)$ ]
$=a^{n} c^{n}+b^{n} c^{n}+b^{n} c^{n}+b^{n} d^{n}$
$=a^{n} c^{n}+b^{n} c^{n}+a^{n} d^{n}+b^{n} d^{n}$ [ Using $(3)$ ]
$=c^{n}\left(a^{n}+b^{n}\right)+d^{n}\left(a^{n}+b^{n}\right)$
$=\left(a^{n}+b^{n}\right)\left(c^{n}+d^{n}\right)=$ $\mathrm{R.H.S.}$
$\therefore\left(b^{n}+c^{n}\right)^{2}=\left(a^{n}+b^{n}\right)\left(c^{n}+d^{n}\right)$
Thus, $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),$ and $\left(c^{n}+d^{n}\right)$ are in $G.P.$
यदि ${a_1},\;{a_2},\,{a_3},......{a_{24}}$ समान्तर श्रेणी में हैं तथा ${a_1} + {a_5} + {a_{10}} + {a_{15}} + {a_{20}} + {a_{24}} = 225$, तो ${a_1} + {a_2} + {a_3} + ........ + {a_{23}} + {a_{24}} = $
यदि $x^{2}-3 x+p=0$ के मूल $a$ तथा $b$ हैं तथा $x^{2}-12 x+q=0,$ के मूल $c$ तथा $d$ हैं, जहाँ $a, b, c, d$ गुणोत्तर श्रेणी के रूप में हैं। सिद्ध कीजिए कि $(q+p):(q-p)=17: 15$
$m$ संख्याओं को $1$ तथा $31$ के रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है और $7$ वीं एव $(m-1)$ वीं संख्याओं का अनुपात $5: 9$ है। तो $m$ का मान ज्ञात कीजिए।
यदि किसी समान्तर अनुक्रम के $p$ वें, $q$ वें व $r$ वें पद क्रमश: $a , b,$ $c$ हों, तो $[a(q - r)$ + $b(r - p)$ $ + c(p - q)]$ का मान होगा
यदि $\frac{1}{3}$ और $\frac{1}{{24}}$ के मध्य दो समान्तर माध्य पद ${A_1}$ व ${A_2}$ हों, तब ${A_1}$ व ${A_2}$ का मान होगा