The ratio of sum of $m$ and $n$ terms of an $A.P.$ is ${m^2}:{n^2}$, then the ratio of ${m^{th}}$ and ${n^{th}}$ term will be
$\frac{{m - 1}}{{n - 1}}$
$\frac{{n - 1}}{{m - 1}}$
$\frac{{2m - 1}}{{2n - 1}}$
$\frac{{2n - 1}}{{2m - 1}}$
The houses on one side of a road are numbered using consecutive even numbers. The sum of the numbers of all the houses in that row is $170$ . If there are at least $6$ houses in that row and $a$ is the number of the sixth house, then
If $\frac{{3 + 5 + 7 + ..........{\rm{to}}\;n\;{\rm{terms}}}}{{5 + 8 + 11 + .........{\rm{to}}\;10\;{\rm{terms}}}} = 7$, then the value of $n$ is
If ${S_k}$ denotes the sum of first $k$ terms of an arithmetic progression whose first term and common difference are $a$ and $d$ respectively, then ${S_{kn}}/{S_n}$ be independent of $n$ if
Let $a_n, n \geq 1$, be an arithmetic progression with first term $2$ and common difference $4$ . Let $M_n$ be the average of the first $n$ terms. Then the sum $\sum \limits_{n=1}^{10} M_n$ is
Let $S_n$ denote the sum of the first $n$ terms of an $A.P$.. If $S_4 = 16$ and $S_6 = -48$, then $S_{10}$ is equal to