The ratio of sum of $m$ and $n$ terms of an $A.P.$ is ${m^2}:{n^2}$, then the ratio of ${m^{th}}$ and ${n^{th}}$ term will be
$\frac{{m - 1}}{{n - 1}}$
$\frac{{n - 1}}{{m - 1}}$
$\frac{{2m - 1}}{{2n - 1}}$
$\frac{{2n - 1}}{{2m - 1}}$
In an $A.P.,$ the first term is $2$ and the sum of the first five terms is one-fourth of the next five terms. Show that $20^{th}$ term is $-112$
The sums of $n$ terms of three $A.P.'s$ whose first term is $1$ and common differences are $1, 2, 3$ are ${S_1},\;{S_2},\;{S_3}$ respectively. The true relation is
Let ${T_r}$ be the ${r^{th}}$ term of an $A.P.$ for $r = 1,\;2,\;3,....$. If for some positive integers $m,\;n$ we have ${T_m} = \frac{1}{n}$ and ${T_n} = \frac{1}{m}$, then ${T_{mn}}$ equals
The mean of the series $a,a + nd,\,\,a + 2nd$ is
Let the sequence $a_{n}$ be defined as follows:
${a_1} = 1,{a_n} = {a_{n - 1}} + 2$ for $n\, \ge \,2$
Find first five terms and write corresponding series.