If $a+x=b+y=c+z+1,$ where $a, b, c, x, y, z$ are non-zero distinct real numbers, then $\left|\begin{array}{lll}x & a+y & x+a \\ y & b+y & y+b \\ z & c+y & z+c\end{array}\right|$ is equal to
$0$
$y(a-b)$
$y(b-a)$
$y(a-c)$
$\left| {\,\begin{array}{*{20}{c}}{{a^2}}&{{b^2}}&{{c^2}}\\{{{(a + 1)}^2}}&{{{(b + 1)}^2}}&{{{(c + 1)}^2}}\\{{{(a - 1)}^2}}&{{{(b - 1)}^2}}&{{{(c - 1)}^2}}\end{array}\,} \right| = $
The value of $\left| {\,\begin{array}{*{20}{c}}{441}&{442}&{443}\\{445}&{446}&{447}\\{449}&{450}&{451}\end{array}\,} \right|$ is
Let $A$ be a $3 \times 3$ matrix with $\operatorname{det}( A )=4$. Let $R _{ i }$ denote the $i ^{\text {th }}$ row of $A$. If a matrix $B$ is obtained by performing the operation $R _{2} \rightarrow 2 R _{2}+5 R _{3}$ on $2 A ,$ then $\operatorname{det}( B )$ is equal to ...... .
If $a,b,c$ are distinct and rational numbers then $\left| {\begin{array}{*{20}{c}}
{\left( {{a^2} + {b^2} + {c^2}} \right)}&{ab + bc + ca}&{ab + bc + ca}\\
{ab + bc + ca}&{\left( {{a^2} + {b^2} + {c^2}} \right)}&{\left( {bc + ca + ab} \right)}\\
{ab + bc + ca}&{\left( {ab + bc + ca} \right)}&{\left( {{a^2} + {b^2} + {c^2}} \right)}
\end{array}} \right|$ is always
The determinant $\left| {\begin{array}{*{20}{c}}{^x{C_1}}&{^x{C_2}}&{^x{C_3}}\\ {^y{C_1}}&{^y{C_2}}&{^y{C_3}}\\{^z{C_1}}&{^z{C_2}}&{^z{C_3}}\end{array}} \right|$ $=$