13.Statistics
medium

If $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)=n$ and $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)^{2}=n a,(n, a>1)$ then the standard deviation of $n$ observations $x _{1}, x _{2}, \ldots, x _{ n }$ is

A

$n \sqrt{ a -1}$

B

$\sqrt{a-1}$

C

$a-1$

D

$\sqrt{n(a-1)}$

(JEE MAIN-2020)

Solution

$S.D =\sqrt{\frac{\sum_{i=1}^{n}\left( x _{ i }- a \right)}{ n }-\left(\frac{\sum_{i=1}^{ n }\left( x _{ i }- a \right)}{ n }\right)^{2}}$

$=\sqrt{\frac{ na }{ n }-\left(\frac{ n }{ n }\right)^{2}}$

$\left\{\right.$ Given $\left.\sum_{i=1}^{n}\left(x_{i}-a\right)=n \sum_{i=1}^{n}\left(x_{i}-a\right)^{2}=n a\right\}$

$=\sqrt{a-1}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.