Express $\sin 67^{\circ}+\cos 75^{\circ}$ in terms of trigonometric ratios of angles between $0^{\circ}$ and $45^{\circ}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\sin 67^{\circ}+\cos 75^{\circ}$

$=\sin \left(90^{\circ}-23^{\circ}\right)+\cos \left(90^{\circ}-15^{\circ}\right)$

$=\cos 23^{\circ}+\sin 15^{\circ}$

Similar Questions

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A,$ using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$

State whether the following are true or false. Justify your answer.

The value of $\sin \theta$ increases as $\theta$ increases.

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$

Show that:

$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$

$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$