Evaluate $\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$

  • A

    $0$

  • B

    $2$

  • C

    $5$

  • D

    $1$

Similar Questions

If $\sin ( A - B )=\frac{1}{2}, \cos ( A + B )=\frac{1}{2}, 0^{\circ} < A + B \leq 90^{\circ}, A > B ,$ find $A$ and $B$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$

$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=..........$

$\sin 2 A=2 \sin A$ is true when $A=$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$