In $\triangle$ $PQR,$ right-angled at $Q$ (see $Fig.$), $PQ =3 \,cm$ and $PR =6 \,cm$. Determine $\angle QPR$ and $\angle PRQ$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given $PQ =3\,cm$ and $PR =6 \,cm$

$\frac{ PQ }{ PR }=\sin R$

$\sin R =\frac{3}{6}=\frac{1}{2}$

$\angle PRQ =30^{\circ}$

$\angle QPR =60^{\circ}$

Similar Questions

If $\tan 2 A=\cot \left(A-18^{\circ}\right),$ where $2 A$ is an acute angle, find the value of $A .$ (in $^{\circ}$)

Given $\sec \theta=\frac{13}{12},$ calculate all other trigonometric ratios.

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$

Evaluate:

$\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$