In $\triangle$ $PQR,$ right-angled at $Q$ (see $Fig.$), $PQ =3 \,cm$ and $PR =6 \,cm$. Determine $\angle QPR$ and $\angle PRQ$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given $PQ =3\,cm$ and $PR =6 \,cm$

$\frac{ PQ }{ PR }=\sin R$

$\sin R =\frac{3}{6}=\frac{1}{2}$

$\angle PRQ =30^{\circ}$

$\angle QPR =60^{\circ}$

Similar Questions

Evaluate:

$\cos 48^{\circ}-\sin 42^{\circ}$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$

Given $\tan A=\frac{4}{3},$ find the other trigonometric ratios of the $\angle A$

If $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right),$ where $4 A$ is an acute angle, find the value of $A$. (in $^{\circ}$)

If $\sin A =\frac{3}{4},$ calculate $\cos A$ and $\tan A$.