1.Set Theory
hard

यदि $A =\{ x \in R : \quad| x \quad-2| > 1\}$, $B=\left\{x \in R : \sqrt{ x ^{2}-3} > 1\right\}, C =\{ x \in R 😐 x -4| \geq 2\}$ हैं तथा समी पूर्णाकों का समुच्चय $Z$ है, तो समुच्चय $( A \cap B \cap C )^{ C } \cap Z$ के उपसमुच्चयों की संख्या है

A

$256$

B

$64$

C

$8$

D

$16$

(JEE MAIN-2021)

Solution

$\mathrm{A}=(-\infty, 1) \cup(3, \infty)$

$\mathrm{B}=(-\infty,-2) \cup(2, \infty)$

$\mathrm{C}=(-\infty, 2] \cup[6, \infty)$

So, $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}=(-\infty,-2) \cup[6, \infty)$

$\mathrm{z} \cap(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})^{\prime}=\{-2,-1,0,-1,2,3,4,5\}$

Hence no. of its subsets $=2^{8}=256$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.