यदि $A =\{ x \in R : \quad| x \quad-2| > 1\}$, $B=\left\{x \in R : \sqrt{ x ^{2}-3} > 1\right\}, C =\{ x \in R :| x -4| \geq 2\}$ हैं तथा समी पूर्णाकों का समुच्चय $Z$ है, तो समुच्चय $( A \cap B \cap C )^{ C } \cap Z$ के उपसमुच्चयों की संख्या है
$256$
$64$
$8$
$16$
माना समुच्चय $\mathrm{C}=\left\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}^2-2^{\mathrm{y}}=2023, \mathrm{x}, \mathrm{y} \in \mathbb{N}\right\}$ है। तो $\sum_{(x, y) \in C}(x+y)$ बराबर है ............
समुच्चय $\left\{\mathrm{n} \in \mathbb{N}: 10 \leq \mathrm{n} \leq 100\right.$ तथा $3^{\mathrm{n}}-3,7$ का एक गुणज है \} में अवयवों की संख्या है :
समुच्चय $\left\{n \in \mathbb{Z}:\left|n^2-10 n+19\right|<6\right\}$ में अवयवों की संख्या है____________.
$2n (A / B) = n (B / A)$ और $5n (A \cap B) = n (A) + 3n (B) $, जहाँ $P/Q = P \cap Q^C$ है। यदि $n (A \cup B) \leq 10$ हो, तो $\frac{{n\ (A).n\ (B).n\ (A\ \cap\ B)}}{8}$ का मान क्या है?
माना $S=\{1,2,3, \ldots ., 100\}$, तो $S$ के उन सभी अरिक्त (non-empty) उपसमुच्चयों $A$ जिनके अवयवों का गुणनफल सम है, की संख्या है