माना $U _{ i =1}^{50} X _{ i }= U _{ i =1}^{ n } Y _{ i }= T$ है, जहाँ प्रत्येक $X _{ i }$ में $10$ अवयव हैं तथा प्रत्येक $Y_{i}$ में $5$ अवयव में है। यदि $T$ का प्रत्येक अवयव ठीक $20, X _{ i }$ समुच्चयों का एक अवयव है तथा ठीक $6, Y _{ i }$ समुच्चयों का एक अवयव है, तो $n$ का मान है
$45$
$15$
$50$
$30$
माना $S =\{4,6,9\}$ तथा $T =\{9,10,11, \ldots, 1000\}$ हैं। यदि $A =\left\{ a _1+ a _2+\ldots+ a _{ k }: k \in N , a _1, a _2\right.$, $\left.a_3, \ldots, a_k \in S\right\}$ है, तो समुच्चय $T-A$ में सभी अवयवों का योग है $..........।$
माना $S=\{1,2,3, \ldots ., 100\}$, तो $S$ के उन सभी अरिक्त (non-empty) उपसमुच्चयों $A$ जिनके अवयवों का गुणनफल सम है, की संख्या है
माना समुच्चय $\mathrm{C}=\left\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}^2-2^{\mathrm{y}}=2023, \mathrm{x}, \mathrm{y} \in \mathbb{N}\right\}$ है। तो $\sum_{(x, y) \in C}(x+y)$ बराबर है ............
$2n (A / B) = n (B / A)$ और $5n (A \cap B) = n (A) + 3n (B) $, जहाँ $P/Q = P \cap Q^C$ है। यदि $n (A \cup B) \leq 10$ हो, तो $\frac{{n\ (A).n\ (B).n\ (A\ \cap\ B)}}{8}$ का मान क्या है?
मान लें कि $a>0$ तथा $a \neq 1$ है। तब सभी धनात्मक वास्तविक संख्याओं $b$ का समुच्चय $S$, जो $\left(1+a^2\right)\left(1+b^2\right)=4 a b$ को संतुष्ट करता है, निम्न होगा: