7.Binomial Theorem
medium

यदि $\left(\frac{ x }{4}-\frac{12}{ x ^{2}}\right)^{12}$ के द्विपद प्रसार में $x$ से स्वतंत्र पद $\left(\frac{3^{6}}{4^{4}}\right) k$ हो, तो $k$ बराबर होगा .........

A

$22$

B

$11$

C

$55$

D

$99$

(JEE MAIN-2021)

Solution

$\left(\frac{x}{4}-\frac{12}{x^{2}}\right)^{12}$

$T_{r+1}=(-1)^{r} \cdot{ }^{12} C_{r}\left(\frac{x}{4}\right)^{12-\mathrm{r}}\left(\frac{12}{x^{2}}\right)^{r}$

$T_{r+1}=(-1)^{r} \cdot{ }^{12} C_{r}\left(\frac{1}{4}\right)^{12-r}(12)^{r} \cdot(x)^{12-3 r}$

Term independent of $x \Rightarrow 12-3 r=0 \Rightarrow r=4$

$\mathrm{T}_{5}=(-1)^{4} \cdot{ }^{12} \mathrm{C}_{4}\left(\frac{1}{4}\right)^{8}(12)^{4}=\frac{3^{6}}{4^{4}} \cdot \mathrm{k}$

$\Rightarrow \mathrm{k}=55$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.