${\left( {x + \frac{1}{{2x}}} \right)^{2n}}$ के विस्तार में मध्य पद है
$\frac{{1.3.5....(2n - 3)}}{{n!}}$
$\frac{{1.3.5....(2n - 1)}}{{n!}}$
$\frac{{1.3.5....(2n + 1)}}{{n!}}$
इनमें से कोई नहीं
${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ के प्रसार में $\frac{1}{x}$ का गुणांक है
$\left(1+x^2\right)^4\left(1+x^3\right)^7\left(1+x^4\right)^{12}$ विस्तार में (expansion) $x^{11}$ का गुणांक (coefficient) है-
${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^8}$ के प्रसार में ${x^7}$ का गुणांक होगा
निम्नलिखित के प्रसार में व्यापक पद लिखिए
$\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ के प्रसार में $13$ वाँ पद ज्ञात कीजिए।
माना $\alpha>0$ न्यूनतम संख्या है, जिसके लिए $\left(\mathrm{x}^{\frac{2}{3}}+\frac{2}{\mathrm{x}^3}\right)^{30}$ के प्रसार का एक पद $\beta \mathrm{x}^{-\alpha}, \beta \in \mathbb{N}$ है तो $\alpha$ बराबर है