यदि $\alpha+\beta+\gamma=2 \pi$ है, तो समीकरण निकाय
$x+(\cos \gamma) y+(\cos \beta) z=0$
$(\cos \gamma) x+y+(\cos \alpha) z=0$
$(\cos \beta) x+(\cos \alpha) y+z=0$
का कोई हल नहीं हैं
के अनंत हल हैं
के ठीक दो हल हैं
का अद्वितीय हल हैं
$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $
यदि $x + y - z = 0,\,3x - \alpha y - 3z = 0,\,\,x - 3y + z = 0$ का अशून्य हल हो, तो $\alpha = $
$\Delta=\left|\begin{array}{ccc}0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right|$ का मान ज्ञात कीजिए।
यदि समीकरणों के निकाय $\alpha x+y+z=5$, $x +2 y +3 z =4, x +3 y +5 z =\beta$ के अनन्त हल है तो क्रमित युग्म $(\alpha, \beta)$ का मान होगा:
यदि $\left| {\,\begin{array}{*{20}{c}}{x + 1}&3&5\\2&{x + 2}&5\\2&3&{x + 4}\end{array}\,} \right| = 0$,तो समीकरण $x =$