- Home
- Standard 11
- Mathematics
4-1.Complex numbers
normal
The complex numbers $sin\ x + i\ cos\ 2x$ and $cos\ x\ -\ i\ sin\ 2x$ are conjugate to each other, for
A
$x = n\pi ,\,n \in Z$
B
$x=0$
C
$x = \frac{{n\pi }}{2},\,n \in Z$
D
No value of $x$
Solution
$\sin x+i \cos 2 x=\cos x+i \sin 2 x$
$\Rightarrow \cos 2 x=\sin 2 x$ and $\sin x=\cos x$
$\Rightarrow \tan x=1$ and $\tan 2 x=1$
$x=\frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4} \quad x=\frac{\pi}{8}, \frac{5 \pi}{8}, \frac{9 \pi}{8}$
$\because$ both equation will not have solution simultaneously, hence answer is $( 4)$
Standard 11
Mathematics