- Home
- Standard 11
- Mathematics
જો $z$ અને $\omega$ એ બે સંકર સંખ્યા છે કે જેથી $|z \omega|=1$ અને $\arg (z)-\arg (\omega)=\frac{3 \pi}{2}$ હોય તો $\arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$ મેળવો.
( અહી $arg(z)$ એ સંકર સંખ્યા $z$ નો મુખ્ય કોણાંક દર્શાવે છે.)
$\frac{3 \pi}{4}$
$-\frac{\pi}{4}$
$-\frac{3 \pi}{4}$
$\frac{\pi}{4}$
Solution
As $|z \omega|=1$
$\Rightarrow|z|=r$, then $|\omega|=\frac{1}{r}$
Let $\arg (z)=q$
$\therefore \arg (\omega)=\left(\theta-\frac{3 \pi}{2}\right)$
$\text { So, } z=r e^{1 \theta}$
$\Rightarrow \bar{z}=r e^{i(-\theta)}$
$\omega=\frac{1}{r} e^{i\left(\theta-\frac{3 \pi}{2}\right)}$
Now, consider
$\frac{1-w \bar{z} \omega}{1+3 \bar{z} \omega}=\frac{1-2 e^{\left(-\frac{3 \pi}{2}\right)}}{1-3 e^{\left(-\frac{3 \pi}{2}\right)}}=\left(\frac{1-2 i}{1+3 i}\right)$
$\therefore \text { prin } \arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$
$=\operatorname{prin} \arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$
$=\left(-\frac{1}{2}(1+i)\right)$
$=-\left(\pi-\frac{\pi}{4}\right)=\frac{-3 \pi}{4}$