In the expansion of
$(2x + 1).(2x + 5) . (2x + 9) . (2x + 13)...(2x + 49),$ find the coefficient of $x^{12}$ is :-
$\frac{325}{2}$
$325 \cdot (2^{12})$
$325 \cdot (2^{11})$
None of these
The coefficient of $x^9$ in the polynomial given by $\sum\limits_{r - 1}^{11} {(x + r)\,(x + r + 1)\,(x + r + 2)...\,(x + r + 9)}$ is
Suppose $\sum \limits_{ r =0}^{2023} r ^{20023} C _{ r }=2023 \times \alpha \times 2^{2022}$. Then the value of $\alpha$ is $............$
If $\mathrm{b}$ is very small as compared to the value of $\mathrm{a}$, so that the cube and other higher powers of $\frac{b}{a}$ can be neglected in the identity $\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b} \ldots .+\frac{1}{a-n b}=\alpha n+\beta n^{2}+\gamma n^{3}$, then the value of $\gamma$ is:
The sum of all the coefficients in the binomial expansion of ${({x^2} + x - 3)^{319}}$ is
If $a$ and $d$ are two complex numbers, then the sum to $(n + 1)$ terms of the following series $a{C_0} - (a + d){C_1} + (a + 2d){C_2} - ........$ is