જો $\sum_{ k =1}^{10} K ^{2}\left(10_{ C _{ K }}\right)^{2}=22000 L$ હોય તો $L$ ની કિમંત $.....$ થાય.
$222$
$221$
$223$
$224$
જો ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$ હોય તો $k$ ની કિમત મેળવો.
$\sum\limits_{n = 1}^\infty {\frac{{^n{C_0} + ...{ + ^n}{C_n}}}{{^n{P_n}}}} $ = . . .
$(x - 1)$$\left( {x\, - \,\frac{1}{2}\,} \right)$$\left( {x\, - \,\frac{1}{{{2^2}}}\,} \right)$ .....$\left( {x\, - \,\frac{1}{{{2^{49}}}}\,} \right)$ ના વિસ્તરણમાં $x^{49}$ નો સહગુણક મેળવો
$^{4n}{C_0}{ + ^{4n}}{C_4}{ + ^{4n}}{C_8} + ....{ + ^{4n}}{C_{4n}}$ = . . .
જો ${a_k} = \frac{1}{{k(k + 1)}},$( $k = 1,\,2,\,3,\,4,.....,\,n$), તો ${\left( {\sum\limits_{k = 1}^n {{a_k}} } \right)^2} = $