7.Binomial Theorem
hard

સંખ્યા $111......1$ ($91$ વખત) એ . . .

A

અવિભાજ્ય નથી.

B

યુગ્મ સંખ્યા

C

અયુગ્મ સંખ્યા નથી

D

એકપણ નહિ.

Solution

(a) $111…..1$ ($91$ times)

= $1 + 10 + {10^2} + ….. + {10^{90}}$

= $\frac{{{{10}^{91}} – 1}}{{10 – 1}} = \frac{{{{({{10}^7})}^{13}} – 1}}{{10 – 1}}$= $\frac{{{t^{13}} – 1}}{9}$, where $t = {10^7}$

= $\left( {\frac{{t – 1}}{9}} \right)\,({t^{12}} + {t^{11}} + ….. + t + 1)$

= $\left( {\frac{{{{10}^7} – 1}}{{10 – 1}}} \right)\,(1 + t + {t^2} + …. + {t^{12}})$

$ = (1 + 10 + {10^2} + …. + {10^6})(1 + t + {t^2} + … + {t^{12}})$

 $111…..1(91\,\,{\rm{times)}}$ is a composite number.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.