यदि $n$ प्राकृत संख्या है और श्रेणी $n+2 n+3 n+\cdots+99 n$ का मान एक पूर्ण वर्ग है, तो ऐसे लघुत्तम $n$ के वर्ग, अर्थात $n^2$ में अंको की संख्या होगी :
$1$
$2$
$3$
$3$ से अधिक
अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए
$a_{1}=-1, a_{n}=\frac{a_{n-1}}{n},$ जहाँ $n \geq 2$
दर्शाइए कि किसी समांतर श्रेणी के $(m+n)$ वें तथा $(m-n)$ वें पदों का योग $m$ वें पद का दुगुना है।
यदि समीकरण ${x^3} - 12{x^2} + 39x - 28 = 0$ के मूल समान्तर श्रेणी में हों, तो श्रेणी का सार्वान्तर होगा
यदि ${a_1},\;{a_2},\;{a_3}.......{a_n}$ स.श्रे. में हों,(जहाँ $i$ के सभी मानों के लिये ${a_i} > 0$), तब $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $$........ + \frac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }}$ का मान होगा
एक व्यक्ति की प्रथम वर्ष में आय $3,00,000$ रुपये है तथा उसकी आय $10,000$ रुपये प्रति वर्ष, उन्नीस वर्षों तक बढती है, तो उसके द्वारा $20$ वर्षों में प्राप्त आय ज्ञात कीजिए।