यदि $x, y$ वास्तविक संख्याएं $(real\,numbers)$ इस प्रकार हैं कि $3^{\frac{x}{y}+1}-3^{\frac{x}{y}-1}=24$ तो $(x+y) /(x-y)$ का मान $(value)$ क्या होंगे ?
$0$
$1$
$2$
$3$
माना $\alpha$ तथा $\beta$ समीकरण $x^{2}-x-1=0$ के मूल हैं। यदि $p _{ k }=(\alpha)^{ k }+(\beta)^{ k }, k \geq 1$, तो निम्न में से कौन सा एक कथन सत्य नहीं है ?
मान लें $a=\sum \limits_{n=101}^{200} 2^n \sum \limits_{k=101}^n \frac{1}{k !}$ और $b=\sum \limits_{n=101}^{200} \frac{2^{201}-2^n}{n !}$ तब $\frac{a}{b}$ है:
यदि $a, b, c, d,-5$ तथा 5 के बीच की वास्तविक संख्याएँ इस प्रकार हैं कि $|a|=\sqrt{4-\sqrt{5-a}}, \quad|b|=\sqrt{4+\sqrt{5-b}}, \quad|c|=\sqrt{4-\sqrt{5+c}},|d|=\sqrt{4+\sqrt{5+a}}$ तब गुणांक $abcd$ क्या होगा ?
समीकरण ${x^4} - 4{x^3} + 6{x^2} - 4x + 1 = 0$ के मूल होंगे
वह प्रतिबंध जिसके लिये ${x^3} - 3px + 2q$,${x^2} + 2ax + {a^2}$ प्रकार के गुणनखण्ड से विभाजित होगा