समीकरण $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$ की संख्या है:
$4$
$0$
$3$
$2$
समीकरण $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ का हल समुच्चय है
यदि समीकरण ${x^2} + 2ax + 10 - 3a > 0$ है तथा$x \in R$, तब
$x$ के उन सभी वास्तविक मानों का योग जो समीकरण $\left(x^{2}-5 x+5\right)^{x^{2}+4 x-60}=1$ को संतुष्ट करते हैं, है:
माना [ $t ], t$ से कम या बराबर महत्तम पूर्णांक फलन को दर्शाता है। तब $x$ में समीकरण $[ x ]^{2}+2[ x +2]-7=0$
माना कि $p_1(x)=x^3-2020 x^2+b_1 x+c_1$ और $p_2(x)=x^3-2021 x^2+b_2 x+c_2$ दो बहुपद हैं; जिसके $\alpha$ एवं $\beta$ दो उभयनिष्ट मूल हैं. मान ले कि $q_1(x)$ एवं $q_2(x)$ बहुपद ऐसे हैं कि $p_1(x) q_1(x)+p_2(x) q_2(x)=x^2-3 x+2$. तब सही तत्समक है: