समीकरण $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$ की संख्या है:

  • [JEE MAIN 2023]
  • A

    $4$

  • B

    $0$

  • C

    $3$

  • D

    $2$

Similar Questions

माना कि $f(x)=x^4+a x^3+b x^2+c$ वास्तविक गुणांकों (real coefficients ) वाला एक ऐसा बहुपद (polynomial) है कि $f(1)=-9$ है। मान लीजिये कि $i \sqrt{3}$, समीकरण $4 x^3+3 a x^2+2 b x=0$ का एक मूल है, जहां $i=\sqrt{-1}$ है। यदि $\alpha_1, \alpha_2, \alpha_3$, और $\alpha_4$, समीकरण $f(x)=0$ के सभी मूल हैं, तब $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ का मान. . . . . है।

  • [IIT 2024]

यदि $x$ वास्तविक है, तो व्यंजक $\frac{{{x^2} + 14x + 9}}{{{x^2} + 2x + 3}}$ के अधिकतम एवं न्यूनतम मान होंगे    

मान लें कि $x, y, z$ धनात्मक संख्याएँ इस प्रकार हैं कि $HCF (x, y, z)=1$ तथा $x^2+y^2=2 z^2$. तब निम्नलिखित में से कौन सा कथन सत्य है ?

$I$. $4,{ }^x$ को विभाजित करता है या $4, y$ को विभाजित करता है।

$II$. $3,{ }^{x+y}$ को विभाजित करता है या $3, x-y$ को विभाजित करता है।

$III$. $5,2\left(x^2-y^2\right)$ को विभाजित करता है।

  • [KVPY 2017]

यदि समीकरण $x^3-27 x+k=0$ के कम से कम दो अभिन्न पूर्णांक मूल हो, तो पूर्णाक $k$ की कितनी संख्याएँ संभव है??

  • [KVPY 2016]

यदि द्विघाती समीकरण, $x^{2}+x \sin \theta-2 \sin \theta=0, \theta \in\left(0, \frac{\pi}{2}\right) \text {, }$ के मूल $\alpha$ तथा $\beta$ हैं, तो $\frac{\alpha^{12}+\beta^{12}}{\left(\alpha^{-12}+\beta^{-12}\right)(\alpha-\beta)^{24}}$ बराबर हैं 

  • [JEE MAIN 2019]