माना $\alpha$ तथा $\beta$ समीकरण $x^{2}-x-1=0$ के मूल हैं। यदि $p _{ k }=(\alpha)^{ k }+(\beta)^{ k }, k \geq 1$, तो निम्न में से कौन सा एक कथन सत्य नहीं है ?

  • [JEE MAIN 2020]
  • A

    $\left(p_{1}+p_{2}+p_{3}+p_{4}+p_{5}\right)=26$

  • B

    $\mathrm{p}_{5}=11$

  • C

    $\mathrm{p}_{3}=\mathrm{p}_{5}-\mathrm{p}_{4}$

  • D

    $\mathrm{p}_{5}=\mathrm{p}_{2} \cdot \mathrm{p}_{3}$

Similar Questions

यदि $x, y, z$ अशून्यक $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ तथा $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, तब $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ का मान क्या होगा ?

  • [KVPY 2013]

यदि $\sqrt {3{x^2} - 7x - 30}  + \sqrt {2{x^2} - 7x - 5}  = x + 5$ हो, तो $x$ बराबर है

मान लें $a=\sum \limits_{n=101}^{200} 2^n \sum \limits_{k=101}^n \frac{1}{k !}$ और $b=\sum \limits_{n=101}^{200} \frac{2^{201}-2^n}{n !}$ तब $\frac{a}{b}$ है:

  • [KVPY 2020]

समीकरण ${x^2} + 5|x| + \,\,4 = 0$ के वास्तविक हल होंगे

किसी खेत में पशुओं की जनसंख्या इस प्रकार परिवर्तित होती है: वर्ष $n+2$ तथा वर्ष $n$ की जनसंख्याओं के बीच का अंतर वर्ष $n+1$ की जनसंख्या समानुपातिक है। यहाँ $n$ एक प्राकृत संख्या है। यदि वर्ष $2010,2011$ और $2013$ में पशुओं की जनसंख्या क्रमानुसार $39,60$ और $123$ हो तो वर्ष $2012$ में जनसंख्या का मान होगा:

  • [KVPY 2014]