4-2.Quadratic Equations and Inequations
hard

माना $\alpha$ तथा $\beta$ समीकरण $x^{2}-x-1=0$ के मूल हैं। यदि $p _{ k }=(\alpha)^{ k }+(\beta)^{ k }, k \geq 1$, तो निम्न में से कौन सा एक कथन सत्य नहीं है ?

A

$\left(p_{1}+p_{2}+p_{3}+p_{4}+p_{5}\right)=26$

B

$\mathrm{p}_{5}=11$

C

$\mathrm{p}_{3}=\mathrm{p}_{5}-\mathrm{p}_{4}$

D

$\mathrm{p}_{5}=\mathrm{p}_{2} \cdot \mathrm{p}_{3}$

(JEE MAIN-2020)

Solution

$\alpha+\beta=1, \alpha \beta=-1$

$\mathrm{P}_{\mathrm{k}}=\alpha^{\mathrm{k}}+\beta^{\mathrm{k}}$

$\alpha^{2}-\alpha-1=0$

$\Rightarrow \alpha^{\mathrm{k}}-\alpha^{\mathrm{k}-1}-\alpha^{\mathrm{k}-2}=0$

and $\beta^{\mathrm{k}}-\beta^{\mathrm{k}-1}-\beta^{\mathrm{k}-2}=0$

$\Rightarrow \mathrm{P}_{\mathrm{k}}=\mathrm{P}_{\mathrm{k}-1}+\mathrm{P}_{\mathrm{k}-2}$

$P_{1}=\alpha+\beta=1$

$\mathrm{P}_{2}=(\alpha+\beta)^{2}-2 \alpha \beta=1+2=3$

$\mathrm{P}_{3}=4$

$\mathrm{P}_{4}=7$

$\mathrm{P}_{5}=11$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.