माना $\alpha$ तथा $\beta$ समीकरण $x^{2}-x-1=0$ के मूल हैं। यदि $p _{ k }=(\alpha)^{ k }+(\beta)^{ k }, k \geq 1$, तो निम्न में से कौन सा एक कथन सत्य नहीं है ?

  • [JEE MAIN 2020]
  • A

    $\left(p_{1}+p_{2}+p_{3}+p_{4}+p_{5}\right)=26$

  • B

    $\mathrm{p}_{5}=11$

  • C

    $\mathrm{p}_{3}=\mathrm{p}_{5}-\mathrm{p}_{4}$

  • D

    $\mathrm{p}_{5}=\mathrm{p}_{2} \cdot \mathrm{p}_{3}$

Similar Questions

यदि ${x^3} + 8 = 0$ के मूल $\alpha ,\,\beta$ तथा $\gamma $  हैं, तो वह समीकरण जिसके मूल ${\alpha ^2},{\beta ^2}$ तथा ${\gamma ^2}$ है, होगा

समीकरण ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}$में $x$ का मान होगा

समीकरण $\mathrm{e}^{\sin x}-2 \mathrm{e}^{-\sin x}=2$ के हलों की संख्या है

  • [JEE MAIN 2024]

माना कि $p_1(x)=x^3-2020 x^2+b_1 x+c_1$ और $p_2(x)=x^3-2021 x^2+b_2 x+c_2$ दो बहुपद हैं; जिसके $\alpha$ एवं $\beta$ दो उभयनिष्ट मूल हैं. मान ले कि $q_1(x)$ एवं $q_2(x)$ बहुपद ऐसे हैं कि $p_1(x) q_1(x)+p_2(x) q_2(x)=x^2-3 x+2$. तब सही तत्समक है:

  • [KVPY 2020]

यदि $x$ वास्तविक है तो $\frac{{{x^2} + 34x - 71}}{{{x^2} + 2x - 7}}$ का मान निम्न के बीच में नहीं होगा