माना $\alpha$ तथा $\beta$ समीकरण $x^{2}-x-1=0$ के मूल हैं। यदि $p _{ k }=(\alpha)^{ k }+(\beta)^{ k }, k \geq 1$, तो निम्न में से कौन सा एक कथन सत्य नहीं है ?

  • [JEE MAIN 2020]
  • A

    $\left(p_{1}+p_{2}+p_{3}+p_{4}+p_{5}\right)=26$

  • B

    $\mathrm{p}_{5}=11$

  • C

    $\mathrm{p}_{3}=\mathrm{p}_{5}-\mathrm{p}_{4}$

  • D

    $\mathrm{p}_{5}=\mathrm{p}_{2} \cdot \mathrm{p}_{3}$

Similar Questions

यदि $\alpha, \beta $ $\gamma$  समीकरण $2{x^3} - 3{x^2} + 6x + 1 = 0$ के मूल हों, तो ${\alpha ^2} + {\beta ^2} + {\gamma ^2}$ का मान है

समीकरण ${e^{\sin x}} - {e^{ - \sin x}} - 4$ $ = 0$के वास्तविक मूलों की संख्या है

  • [IIT 1982]

मान लें कि $x, y$ दो अंकों वाली प्राकृत संख्याएँ हैं। संख्या $x$ के अंकों को उत्क्रमित $(reverse)$ करने पर संख्या $y$ प्राप्त होती हैं। यदि प्राकृत संख्या $m$ इस प्रकार है कि $x^2-y^2=m^2$ तो $x+y+m$ का मान होगा:

  • [KVPY 2014]

यदि समीकरण $e^{2 x}-11 e^x-45 e^{-x}+\frac{81}{2}=0$ के सभी मूलों का योग $\log _e P$ है तो $p$ बराबर होगा।

  • [JEE MAIN 2022]

समीकरण $\sqrt{3 x^{2}+x+5}=x-3$, जहाँ $x$ वास्तविक है, का / के

  • [JEE MAIN 2014]