यदि $\mathrm{R}, \mathrm{X}_{\mathrm{L}}$. तथा $\mathrm{X}_{\mathrm{C}}$ क्रमशः प्रतिरोध, प्रेरकीय प्रतिघात एवं धारतीय प्रतिघात को निरूपित करते है तो निम्न में से कौनसा विमाहीन है?

  • [JEE MAIN 2023]
  • A

    $RX _{ L } X _{ C }$

  • B

    $\frac{ R }{\sqrt{ X _{ L } X _{ C }}}$

  • C

    $\frac{R}{X_L X_C}$

  • D

    $R \frac{X_L}{X_C}$

Similar Questions

मार्टियन पद्धति में बल $(F)$, त्वरण $(A)$ और समय $(T)$ को मूल भौतिक राशि के रुप में उपयोग करते हैं। लम्बाई की विमायें मार्टियन पद्धति में होंगी

विधुतचुम्बकीय सिद्धांत के अनुसार विद्युत् और चुम्बकीय परिघटनाओं (phenomena) के बीच संबंध होता है। इसलिए विधुत और चुम्बकीय राशियों के विमाओं (dimensions) में भी संबंध होने चाहिए। निम्नलिखित प्रश्नों में $[E]$ और $[B]$ क्रमशः विधुत और चुम्बकीय क्षेत्रों की विमाओं को दर्शाते हैं, जबकि [ $\left.\epsilon_0\right]$ और $\left[\mu_0\right]$ क्रमशः मुक्त आकाश (free space) की पराविधुटांक (permittivity) और चुम्बकशीलता (permeability) की विमाओं को दर्शाते हैं। $[L]$ और $[T]$ क्रमशः लम्बाई और समय की विमायें हैं। सभी राशियाँ SI मात्रकों (units) में दी गयी हैं ।

($1$) $[E]$ और $[B]$ के बीच में संबंध है

$(A)$ $[ E ]=[ B ][ L ][ T ]$  $(B)$ $[ E ]=[ B ][ L ]^{-1}[ T ]$  $(C)$ $[ E ]=[ B ][ L ][ T ]^{-1}$  $(D)$ $[ E ]=[ B ][ L ]^{-1}[ T ]^{-1}$

($2$) $\left[\epsilon_0\right]$ और $\left[\mu_0\right]$ के बीच में संबंध है

$(A)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^2[ T ]^{-2}$  $(B)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^{-2}[ T ]^2$   $(C)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^2[ T ]^{-2}$  $(D)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^{-2}[ T ]^2$

इस प्रश्न के उतर दीजिये $1$ ओर $2.$

  • [IIT 2018]

यदि प्रकाश वेग $(c)$, सार्वत्रिक गुरुत्वाकर्षण नियतांक $[G]$, प्लांक नियतांक $[h]$ को मूल मात्रकों की तरह प्रयुक्त किया जाये तब इस नयी पद्धति में समय की विमा होगी

  • [AIIMS 2008]

यदि ऊर्जा $(E)$, वेग $(v)$ तथा समय $(T)$ को मूल राशियाँ माना जाये तो पृष्ठ तनाव की विमा होंगी

  • [AIPMT 2015]

एक सरल लोलक पर विचार कीजिए, जिसमें गोलक को एक धागे से बाँध कर लटकाया गया है और जो गुरुत्व बल के अधीन दोलन कर रहा है। मान लीजिए कि इस लोलक का दोलन काल इसकी लम्बाई $(l)$, गोलक के द्रब्यमान $(m)$ और गुर्त्वीय त्वरण $(g)$ पर निर्भर करता है। विमाओं की विधि का उपयोग करके इसके दोलन-काल के लिए सूत्र व्युत्पन्न कीजिए।