यदि $\mathrm{R}, \mathrm{X}_{\mathrm{L}}$. तथा $\mathrm{X}_{\mathrm{C}}$ क्रमशः प्रतिरोध, प्रेरकीय प्रतिघात एवं धारतीय प्रतिघात को निरूपित करते है तो निम्न में से कौनसा विमाहीन है?
$RX _{ L } X _{ C }$
$\frac{ R }{\sqrt{ X _{ L } X _{ C }}}$
$\frac{R}{X_L X_C}$
$R \frac{X_L}{X_C}$
यदि संवेग $[ P ]$, क्षेत्रफल $[ A ]$ एवं समय $[ T ]$ का प्रयोग मूलभूत राशियों की तरह किया जाए, तो श्यानता गुणांक का विमीय सूत्र होगा :
दाब $(P)$, आयतन $(V)$ तथा समय $(T)$ को मूल राशियाँ मानने पर बल का विमीय सूत्र होगा
$A, B, C$ तथा $D$ चार भिन्न मात्राएँ हैं जिनकी विमाएं भिन्न हैं। कोई भी मात्रा विमा-रहित मात्रा नहीं हैं, लेकिन $A D=C \ln (B D)$ सत्य है। तब निम्न में से कौन आशय-रहित मात्रा है ?
भौतिकी का एक प्रसिद्ध संबंध किसी कण के 'चल द्रव्यमान (moving mass)' $m$ ' विराम द्रव्यमान (rest mass)' $m_{0}$, इसकी चाल $v$, और प्रकाश की चाल $c$ के बीच है । ( यह संबंध सबसे पहले अल्बर्ट आइंस्टाइन के विशेष आपेक्षिकता के सिद्धांत के परिणामस्वरूप उत्पन्न हुआ था।) कोई छत्र इस संबंध को लगभग सही याद करता है लेकिन स्थिरांक $c$ को लगाना भूल जाता है । वह लिखता है $: m \frac{m_{0}}{\left(1 \quad v^{2}\right)^{1 / 2}}$ । अनुमान लगाइए कि $c$ कहां लगेगा