किसी ग्रह के लिये कक्षीय वेग निम्न सूत्र द्वारा दिया जाता है $v = {G^a}{M^b}{R^c}$, तब
$a = 1/3,\,b = 1/3,\,c = - 1/3$
$a = 1/2,\,b = 1/2,\,c = - 1/2$
$a = 1/2,\,b = - 1/2,\,c = 1/2$
$a = 1/2,\,b = - 1/2,\,c = - 1/2$
एक लंबाई माप $(l)$ की निर्भरता, पराविधुत पदार्थ के पराविद्युतांक $(\varepsilon)$, बोल्टज़मान स्थिरांक (Boltzmann constant) $\left(k_B\right)$, परम ताप $(T)$, एक आयतन में कुछ आवेशित कणों की संख्या $(n)$ (संख्या-घनत्व) तथा हर एक कण के आवेश $(q)$ पर होती है। $l$ के लिए निम्नलिखित में से सही विमीयता वाला कौनसा / कौनसे सूत्र है/हैं?
$(A)$ $l=\sqrt{\left(\frac{n q^2}{\varepsilon k_B T}\right)}$
$(B)$ $l=\sqrt{\left(\frac{\varepsilon k_B T}{n q^2}\right)}$
$(C)$ $\quad l=\sqrt{\left(\frac{q^2}{\varepsilon n^{2 / 3} k_B T}\right)}$
$(D)$ $l=\sqrt{\left(\frac{q^2}{\varepsilon n^{1 / 3} k_B T}\right)}$
$\left(\mu_{0} \varepsilon_{0}\right)^{-1 / 2}$ की विमा होती है
यदि $M = $द्रव्यमान, $L = $लम्बाई, $T = $समय तथा $I = $विद्युत धारा तथा यदि $[{\varepsilon _0}]$निर्वात की विद्युतशीलता तथा $[{\mu _0}]$ निर्वात की चुम्बकशीलता की विमा को प्रदर्शित करें तो $M,L,T$ तथा $I$ के पदों में सही विमीय सूत्र है। जहाँ संकेतों के सामान्य अर्थ हैं
न्यूटन के अनुसार, किसी द्रव की पर्तों के बीच लगने वाला श्यान बल $F = - \eta A\frac{{\Delta v}}{{\Delta z}}$ होता है । जहाँ $A$ द्रव की सतह का क्षेत्रफल, $\Delta v/\Delta z$ वेग प्रवणता और $\eta $ श्यानता गुणांक है तब $\eta $ की विमा होगी
आइए निम्नलिखित समीकरण पर विचार करे $\frac{1}{2} m v^{2}=m g h$ यहाँ $m$ वस्तु का द्रव्यमान, $v$ इसका वेग है, $g$ गुरुत्वीय त्वरण और $h$ ऊँचाई है। जाँचिए कि क्या यह समीकरण विमीय दृष्टि से सही है।