- Home
- Standard 12
- Mathematics
If $P$ is a $3 \times 3$ real matrix such that $P ^{ T }=a P +( a -1) I$, where $a > 1$, then $..........$
$P$ is a singular matrix
$|\operatorname{Adj} P|>1$
$|\operatorname{Adj} P|=\frac{1}{2}$
$|\operatorname{Adj} P|=1$
Solution
$P ^{ T }= aP +( a -1) I$
$\Rightarrow P = aP ^{ T }+( a -1) I$
$\Rightarrow P ^{ T }- P = a \left( P – P ^{ T }\right)$
$\Rightarrow P = P ^{ T } \text {, as } a \neq-1$
$\text { Now, } P = aP +( a -1) I$
$\Rightarrow P =- I \Rightarrow| P |=1$
$\Rightarrow|\operatorname{Adj} P |=1$
Similar Questions
Consider the following information regarding the number of men and women workers in three factories $I,\,II$ and $III$
Men workers |
Women workers |
|
$I$ | $30$ | $25$ |
$II$ | $25$ | $31$ |
$III$ | $27$ | $26$ |
Represent the above information in the form of a $3 \times 2$ matrix. What does the entry in the third row and second column represent?