Show that if $A \subset B,$ then $(C-B) \subset( C-A)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A \subset B$

To show: $C-B \subset C-A$

Let $x \in C-B$

$\Rightarrow x \in C$ and $x \notin B$

$\Rightarrow x \in C$ and $x \notin A[A \subset B]$

$\Rightarrow x \in C-A$

$\therefore C-B \subset C-A$

Similar Questions

If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\},$ find

$Y-X$

Let $V =\{a, e, i, o, u\}$ and $B =\{a, i, k, u\} .$ Find $V - B$ and $B - V$

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$B-A$

The shaded region in the given figure is

Let $A :\{1,2,3,4,5,6,7\}$. Define $B =\{ T \subseteq A$ : either $1 \notin T$ or $2 \in T \}$ and $C = \{ T \subseteq A : T$ the sum of all the elements of $T$ is a prime number $\}$. Then the number of elements in the set $B \cup C$ is $\dots\dots$

  • [JEE MAIN 2022]