જો $X = \{ {4^n} - 3n - 1:n \in N\} $ અને $Y = \{ 9(n - 1):n \in N\} ,$ then $X \cup Y$ = . . .
$X$
$Y$
$N$
એકપણ નહી.
અહી $a>0, a \neq 1$ હોય તો ગણ $S$ એ $b$ ની બધીજ ધન કિમંતો નો ગણ છે કે જે $\left(1+a^2\right)\left(1+b^2\right)=4 a b$ નું સમાધાન કરે છે ગણ $S$ તો . . . .
જો $\mathrm{A}=\{\mathrm{x} \in {R}:|\mathrm{x}-2|>1\}, \mathrm{B}=\left\{\mathrm{x} \in {R}: \sqrt{\mathrm{x}^{2}-3}>1\right\}$, $\mathrm{C}=\{\mathrm{x} \in f{R}:|\mathrm{x}-4| \geq 2\}$ અને ${Z}$ એ પૂર્ણાંક સંખ્યા ગણ છે તો $(A \cap B \cap C)^{c} \cap {Z}$ ના કુલ ઉપગણની સંખ્યા મેળવો.
અહી $S=\{4,6,9\}$ અને $T=\{9,10,11, \ldots, 1000\}$ છે. જો $A=\left\{a_{1}+a_{2}+\ldots+a_{k}: k \in N, a_{1}, a_{2}, a_{3}, \ldots, a_{k} \in S\right\}$ હોય તો ગણ $T - A$ ના બધાજ ઘટકોનો સરવાળો મેળવો.
ધારો કે $C=\left\{(x, y) \mid x^2-2^y=2023, x, y \in \mathbb{N}\right\}$.તો $\sum_{(x, y) \in C}(x+y)$ =__________.
જો $S = \{1, 2, 3, ….., 100\}$. જ્યાં $A$ માં રહેલા બધા ઘટકો નો ગુણાકાર યુગ્મ આવે એવા $S$ ના ખાલી ગણ ના હોય એવા ઉપગણો $A$ ની સંખ્યા મેળવો