જો $X = \{ {4^n} - 3n - 1:n \in N\} $ અને $Y = \{ 9(n - 1):n \in N\} ,$ then $X \cup Y$ = . . .
$X$
$Y$
$N$
એકપણ નહી.
જો $\bigcup \limits_{i=1}^{50} X_{i}=\bigcup \limits_{i=1}^{n} Y_{i}=T$ જ્યાં દરેક $X_{i}$ માં $10$ ઘટકો હોય અને દરેક $Y_{i}$ માં $5$ ઘટકો છે અને ગણ $T$ ના દરેક ઘટકમાં બરાબર $20$ ઘટકો ગણ $X_{i}$ ના અને બરાબર $6$ ઘટકો ગણ $Y_{i}$ ના હોય તો $n$ ની કિમત શોધો
જો $S = \{1, 2, 3, ….., 100\}$. જ્યાં $A$ માં રહેલા બધા ઘટકો નો ગુણાકાર યુગ્મ આવે એવા $S$ ના ખાલી ગણ ના હોય એવા ઉપગણો $A$ ની સંખ્યા મેળવો
ગણ $\left\{n \in Z :\left|n^2-10 n+19\right| < 6\right\}$ ના ઘટકોની સંખ્યા $..........$ છે.
જો $A=\left\{n \in N \mid n^{2} \leq n+10,000\right\}, B=\{3 k+1 \mid k \in N\}$ અને $C=\{2 k \mid k \in N\}$ હોય તો ગણ $A \cap(B-C)$ ના બધાજ ઘટકોનો સરવાળો મેળવો.
ધારો કે $S = \{ x \in R:x \ge 0$ અને $2\left| {\sqrt x - 3} \right| + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0\} $ તો $S:$ . . .