જો $A, B$ અને $C$ એવા ગણ છે કે જેથી $\phi \ne A \cap B \subseteq C$ તો નીચેનામાંથી ક્યુ વિધાન ખોટું છે
જો $\left( {A - C} \right) \subseteq B$ હોય તો $A \subseteq B$
જો $\left( {A - B} \right) \subseteq C$ હોય તો $A \subseteq C$
$\left( {C \cup A} \right) \cap \left( {C \cup B} \right) = C$
$B \cap C \ne \phi $
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $D-A$
જો $A = \{ (x,\,y):y = {e^x},\,x \in R\} $,$B = \{ (x,\,y):y = {e^{ - x}},\,x \in R\} .$ તો . .
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $C-B$
જો $X=\{a, b, c, d\}$ અને $Y=\{f, b, d, g\},$ તો મેળવો : $X \cap Y$
ગણ $A = \{ 1,\,2,\,3\} ,\,B = \{ 3,4\} , C = \{4, 5, 6\}$, તો $A \cup (B \cap C)$ મેળવો.