If $A$ and $B$ are not disjoint sets, then $n(A \cup B)$ is equal to

  • A

    $n(A) + n(B)$

  • B

    $n(A) + n(B) - n(A \cap B)$

  • C

    $n(A) + n(B) + n(A \cap B)$

  • D

    $n(A)\,n(B)$

Similar Questions

Let $\mathrm{X}=\{\mathrm{n} \in \mathrm{N}: 1 \leq \mathrm{n} \leq 50\} .$ If $A=\{n \in X: n \text { is a multiple of } 2\}$ and $\mathrm{B}=\{\mathrm{n} \in \mathrm{X}: \mathrm{n} \text { is a multiple of } 7\},$ then the number of elements in the smallest subset of $X$ containing both $\mathrm{A}$ and $\mathrm{B}$ is

  • [JEE MAIN 2020]

If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find $B \cap C$

 

$A-(A-B)$ is 

State whether each of the following statement is true or false. Justify you answer.

$\{2,3,4,5\}$ and $\{3,6\}$ are disjoint sets.

If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find

$B \cup C$