If $A$ and $B$ are not disjoint sets, then $n(A \cup B)$ is equal to
$n(A) + n(B)$
$n(A) + n(B) - n(A \cap B)$
$n(A) + n(B) + n(A \cap B)$
$n(A)\,n(B)$
(b) $n(A \cup B) = n(A) + n\,(B) – n(A \cap B)$.
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap C$
$A-(A-B)$ is
$A \cap D$
Find the union of each of the following pairs of sets :
$A=\{a, e, i, o, u\} B=\{a, b, c\}$
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup B$
Confusing about what to choose? Our team will schedule a demo shortly.