જો સંબંધ $R$ એ $A$ થી $B$ અને સંબંધ $S$ એ $B$ થી $C$ પર વ્યાખ્યાયિત હોય તો,સંબંધ $SoR$ એ . . .
$A $ થી $C$
$C$ થી $A$
અસ્તિત્વ નથી.
એકપણ નહીં.
(a) It is obvious.
ધારો કે $P ( S )$ એ $S =\{1,2,3, \ldots ., 10\}$ નો ઘાતગણ દર્શાવે છે.$P ( S )$ પર સંબંધો $R_1$ અને $R_2$ નીચે પ્રમાણે વ્યાખ્યાયિત કરો.$A R_1 B$ જો $\left( A \cap B ^{ c }\right) \cup\left( B \cap A ^{ c }\right)=\varnothing$ અને $A R_2 B$ જો $A \cup B ^{ c }=$ $B \cup A ^{ c }, \forall A , B \in P ( S )$.તો:
ધારોકે $R$ પરના બે સંબંધો $R_{1}$ અને $R_{2}$ નીયે મુજબ વ્યાખ્યાયિત છે: $a R_{1} b \Leftrightarrow a b \geq 0$ અને $a R_{2} b \Leftrightarrow a \geq b$, તો
$X$ એ આપેલ અરિક્ત ગણ છે. $X$ ના તમામ ઉપગણોના ગણ $P(X)$ નો વિચાર કરો. $P(X)$ માં સંબંધ $R$ આ પ્રમાણે વ્યાખ્યાયિત છે :
$P(X)$ ના ઉપગણો $A$ અને $B$ માટે, $A \subset B$ તો અને તો જ $ARB$.
$R$, $P(X)$ પર સામ્ય સંબંધ છે ? તમારા જવાબનું સમર્થન કરો.
જો $r$ એ $R$ થી $R$ પરનો સંબંધ વ્યાખ્યાયિત હોય $r$ = $\left\{ {\left( {x,y} \right)\,|\,x,\,y\, \in \,R} \right.$ અને $xy$ એ અસમેય સંખ્યા છે $\}$ , હોય તો સંબંધ $r$ એ
જો સંબંધ $R$ એ ગણ $A$ પરનો સંબંધ છે કે જેથી $R = {R^{ – 1}}$, તો $R$ એ . . . .
Confusing about what to choose? Our team will schedule a demo shortly.