1.Relation and Function
normal

જો $n(A) = m$ હોય તો ગણ $A$ પરના બધા સ્વવાચક સંબંધોની સંખ્યાઓ મેળવો. 

A

$2^m$

B

$2^{m^2 - m}$

C

$2^{m^2}$

D

$2^{m^2 - m} - 1$

Solution

$n(A \times A)=m^{2} .$ Now let $R$ is reflexive so $R$ must contain $\mathrm{m}$ elements i.e. $(\mathrm{i}, \mathrm{i}) \in \mathrm{R} \forall \mathrm{x} \in \mathrm{A}$

now remaining element in $(\mathrm{A} \times \mathrm{A})$ which are not in $'R'$ $=m^{2}-m$

so number of reflexive relation that can be defined on $A$ are

$\left(^{m^{2}-m} C_{0}+^{m^{2}-m} C_{1}+\ldots . .+^{m^{2}-m} C_{m^{2}-m}\right)=2^{m^{2}-m}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.