If $|z|\, = 4$ and $arg\,\,z = \frac{{5\pi }}{6},$then $z =$
$2\sqrt 3 - 2i$
$2\sqrt 3 + 2i$
$ - 2\sqrt 3 + 2i$
$ - \sqrt 3 + i$
Let $\alpha=8-14 i , A=\left\{ z \in C : \frac{\alpha z -\bar{\alpha} \overline{ z }}{ z ^2-(\overline{ z })^2-112 i }=1\right\}$ and $B =\{ z \in C :| z +3 i |=4\}$ Then $\sum_{z \in A \cap B}(\operatorname{Re} z-\operatorname{Im} z)$ is equal to $...............$.
If a complex number $z$ statisfies the equation $x + \sqrt 2 \,\,\left| {z + 1} \right|\,+ \,i\, = \,0,$ then $\left| z \right|$ is equal to
If $z$ is a complex number, then $z.\,\overline z = 0$ if and only if
$arg\left( {\frac{{3 + i}}{{2 - i}} + \frac{{3 - i}}{{2 + i}}} \right)$ is equal to
If $z_1 = a + ib$ and $z_2 = c + id$ are complex numbers such that $| z_1 | = | z_2 |=1$ and $R({z_1}\overline {{z_2}} ) = 0$, then the pair of complex numbers $w_1 = a + ic$ and $w_2 = b + id$ satisfies