If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to
${1 \over {2a + 1}}$
${1 \over {2b + 1}}$
$2ab + 1$
${1 \over {2ab - 1}}$
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to
Let $a , b , c$ be three distinct positive real numbers such that $(2 a)^{\log _{\varepsilon} a}=(b c)^{\log _e b}$ and $b^{\log _e 2}=a^{\log _e c}$. Then $6 a+5 b c$ is equal to $........$.
If $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2,$ then $A$ is equal to
If ${a^x} = b,{b^y} = c,{c^z} = a,$ then value of $xyz$ is
The number of solution $(s)$ of the equation $log_7(2^x -1) + log_7(2^x -7) = 1$, is -