- Home
- Standard 11
- Mathematics
Basic of Logarithms
medium
If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to
A
${1 \over {2a + 1}}$
B
${1 \over {2b + 1}}$
C
$2ab + 1$
D
${1 \over {2ab - 1}}$
Solution
(d) $ab = {\log _4}5.{\log _5}6 = {\log _4}6 = {1 \over 2}{\log _2}6$
$ab = {1 \over 2}(1 + {\log _2}3) \Rightarrow 2ab – 1 = {\log _2}3$
$\therefore {\log _3}2 = {1 \over {2ab – 1}}$.
Standard 11
Mathematics