If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to

  • A

    ${1 \over {2a + 1}}$

  • B

    ${1 \over {2b + 1}}$

  • C

    $2ab + 1$

  • D

    ${1 \over {2ab - 1}}$

Similar Questions

Let $\log _a b=4, \log _c d=2$, where $a, b, c, d$ are natural numbers. Given that $b-d=7$, the value of $c-a$ is

  • [KVPY 2009]

If $3^x=4^{x-1}$, then $x=$

$(A)$ $\frac{2 \log _3 2}{2 \log _3 2-1}$ $(B)$ $\frac{2}{2-\log _2 3}$ $(C)$ $\frac{1}{1-\log _4 3}$ $(D)$ $\frac{2 \log _2 3}{2 \log _2 3-1}$

  • [IIT 2013]

If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ then $x$ lies in the interval

If ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0,$ then $x$ is equal to

The number of solution $(s)$ of the equation $log_7(2^x -1) + log_7(2^x -7) = 1$, is -