If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to

  • A

    ${1 \over {2a + 1}}$

  • B

    ${1 \over {2b + 1}}$

  • C

    $2ab + 1$

  • D

    ${1 \over {2ab - 1}}$

Similar Questions

Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,

  • [KVPY 2018]

Logarithm of $32\root 5 \of 4 $ to the base $2\sqrt 2 $ is

$\sum\limits_{r = 1}^{89} {{{\log }_3}(\tan \,\,{r^o})} = $

The set of real values of $x$ satisfying ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ is

The number of solution pairs $(x, y)$ of the simultaneous equations $\log _{1 / 3}(x+y)+\log _3(x-y)=2$ $2^{y^2}=512^{x+1}$ is

  • [KVPY 2017]