If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to

  • A

    ${1 \over {2a + 1}}$

  • B

    ${1 \over {2b + 1}}$

  • C

    $2ab + 1$

  • D

    ${1 \over {2ab - 1}}$

Similar Questions

Solution set of equation

$\left| {1 - {{\log }_{\frac{1}{6}}}x} \right| + \left| {{{\log }_2}x} \right| + 2 = \left| {3 - {{\log }_{\frac{1}{6}}}x + {{\log }_{\frac{1}{2}}}x} \right|$ is $\left[ {\frac{a}{b},a} \right],a,b, \in N,$ then the value of $(a + b)$ is

If $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$, then $xyz$ is

The value of $\sqrt {(\log _{0.5}^24)} $ is

If $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ which one of the following is correct

Let $n$ be the smallest positive integer such that $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \geq 4$. Which one of the following statements is true?

  • [KVPY 2017]