Basic of Logarithms
medium

જો ${a^2} + 4{b^2} = 12ab $ તો $\log (a + 2b)= . . .$ .

A

${1 \over 2}[\log a + \log b - \log 2]$

B

$\log {a \over 2} + \log {b \over 2} + \log 2$

C

${1 \over 2}[\log a + \log b + 4\log 2]$

D

${1 \over 2}[\log a - \log b + 4\log 2]$

Solution

(c) ${a^2} + 4{b^2} = 12ab$$ \Rightarrow $${a^2} + 4{b^2} + 4ab = 16ab$

$ \Rightarrow $${(a + 2b)^2} = 16ab$

$ \Rightarrow $$2\log (a + 2b) = \log 16 + \log a + \log b$

$\therefore $ $\log (a + 2b) = {1 \over 2}[\log a + \log b + 4\log 2]$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.