If ${a^2} + 4{b^2} = 12ab,$ then $\log (a + 2b)$ is

  • A

    ${1 \over 2}[\log a + \log b - \log 2]$

  • B

    $\log {a \over 2} + \log {b \over 2} + \log 2$

  • C

    ${1 \over 2}[\log a + \log b + 4\log 2]$

  • D

    ${1 \over 2}[\log a - \log b + 4\log 2]$

Similar Questions

If ${x_n} > {x_{n - 1}} > ... > {x_2} > {x_1} > 1$ then the value of ${\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}.....{\log _{{x_n}}}{x_n}^{x_{n - 1}^{{ {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} ^{{x_1}}}}}$ is equal to

If  ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ then

The number of solution pairs $(x, y)$ of the simultaneous equations $\log _{1 / 3}(x+y)+\log _3(x-y)=2$ $2^{y^2}=512^{x+1}$ is

  • [KVPY 2017]

Let $n$ be the smallest positive integer such that $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \geq 4$. Which one of the following statements is true?

  • [KVPY 2017]

If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be