If $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab),$then which of the following is equal to $1$
$x + y + z$
${(1 + x)^{ - 1}} + {(1 + y)^{ - 1}} + {(1 + z)^{ - 1}}$
$xyz$
None of these
The sum $\sum \limits_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}$ is equal to :
The number of solution pairs $(x, y)$ of the simultaneous equations $\log _{1 / 3}(x+y)+\log _3(x-y)=2$ $2^{y^2}=512^{x+1}$ is
If ${\log _{10}}2 = 0.30103,{\log _{10}}3 = 0.47712,$ the number of digits in ${3^{12}} \times {2^8} $ is
The number of solution $(s)$ of the equation $log_7(2^x -1) + log_7(2^x -7) = 1$, is -
$\sum\limits_{r = 1}^{89} {{{\log }_3}(\tan \,\,{r^o})} = $