If $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab),$then which of the following is equal to $1$
$x + y + z$
${(1 + x)^{ - 1}} + {(1 + y)^{ - 1}} + {(1 + z)^{ - 1}}$
$xyz$
None of these
If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to
If $x, y, z \in R^+$ are such that $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ and ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ then ${\log _x}z$ is equal to
Let $a=3 \sqrt{2}$ and $b=\frac{1}{5^{\frac{1}{6}} \sqrt{6}}$. If $x, y \in R$ are such that $3 x+2 y=\log _a(18)^{\frac{5}{4}} \text { and }$ $2 x-y=\log _b(\sqrt{1080}),$ then $4 x+5 y$ is equal to. . . .
Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,
The set of real values of $x$ satisfying ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ is