જો $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab),$ તો આપેલ પૈકી કોની કિમત $1$ છે.
$x + y + z$
${(1 + x)^{ - 1}} + {(1 + y)^{ - 1}} + {(1 + z)^{ - 1}}$
$xyz$
એકપણ નહી.
ધારોકે $a,b,c$ એ એવી ત્રણ ભિન્ન વાસ્તવિક સંખ્યાઓ છે કે જેથી $(2 a)^{\log _e a}=(b c)^{\log _e b}$ અને $b^{\log _e 2}=a^{\log _e c}$ તો $6 a+5 b c=..........$
${\log _{0.2}}{{x + 2} \over x} \le 1$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
વાસ્તવિક સંખ્યા $k$ ની કેટલી કિમત માટે વાસ્તવિક સહગુણકો ધરાવતા સમીકરણ ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ નો માત્ર એક્જ ઉકેલ મળે.
જો ${a^x} = b,{b^y} = c,{c^z} = a,$ તો $xyz = . . . .$
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)= . . . .$