If $\alpha$ denotes the number of solutions of $|1-i|^x=2^x$ and $\beta=\left(\frac{|z|}{\arg (z)}\right)$, where $z=\frac{\pi}{4}(1+i)^4\left(\frac{1-\sqrt{\pi i}}{\sqrt{\pi}+i}+\frac{\sqrt{\pi}-i}{1+\sqrt{\pi} \mathrm{i}}\right), i=\sqrt{-1}$, then the distance of the point $(\alpha, \beta)$ from the line $4 x-3 y=7$ is
$2$
$3$
$4$
$5$
Let $a \neq b$ be two non-zero real numbers.Then the number of elements in the set $X =\left\{ z \in C : \operatorname{Re}\left(a z^2+ bz \right)= a \text { and }\operatorname{Re}\left(b z^2+ az \right)= b \right\}$ is equal to
The argument of the complex number $\sin \,\frac{{6\pi }}{5}\, + \,i\,\left( {1\, + \,\cos \,\frac{{6\pi }}{5}} \right)$ is
If $z$ is a complex number such that ${z^2} = {(\bar z)^2},$ then
The values of $z$for which $|z + i|\, = \,|z - i|$ are
Let $z =1+ i$ and $z _1=\frac{1+ i \overline{ z }}{\overline{ z }(1- z )+\frac{1}{ z }}$. Then $\frac{12}{\pi}$ $\arg \left(z_1\right)$ is equal to $..........$.