The amplitude of $\sin \frac{\pi }{5} + i\,\left( {1 - \cos \frac{\pi }{5}} \right)$

  • A

    $\pi /5$

  • B

    $2\pi /5$

  • C

    $\pi /10$

  • D

    $\pi /15$

Similar Questions

For any complex number $w = c + id$, let $\arg ( w ) \in(-\pi, \pi]$, where $i =\sqrt{-1}$. Let $\alpha$ and $\beta$ be real numbers such that for all complex numbers $z=x+$ iy satisfying arg $\left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$, the ordered pair $( x , y )$ lies on the circle

$x^2+y^2+5 x-3 y+4=0 .$

Then which of the following statements is (are) TRUE?

$(A)$ $\alpha=-1$  $(B)$ $\alpha \beta=4$   $(C)$ $\alpha \beta=-4$   $(D)$ $\beta=4$

  • [IIT 2021]

Find the modulus and argument of the complex numbers:

$\frac{1+i}{1-i}$

If $|{z_1}|\, = \,|{z_2}|$ and $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, then ${z_1} + {z_2}$ is equal to

A real value of $x$ will satisfy the equation $\left( {\frac{{3 - 4ix}}{{3 + 4ix}}} \right) = $ $\alpha - i\beta \,(\alpha ,\beta \,{\rm{real),}}$ if

If $\alpha$ and $\beta$ are different complex numbers with $|\beta|=1,$ then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$