The amplitude of $\sin \frac{\pi }{5} + i\,\left( {1 - \cos \frac{\pi }{5}} \right)$
$\pi /5$
$2\pi /5$
$\pi /10$
$\pi /15$
For any complex number $w = c + id$, let $\arg ( w ) \in(-\pi, \pi]$, where $i =\sqrt{-1}$. Let $\alpha$ and $\beta$ be real numbers such that for all complex numbers $z=x+$ iy satisfying arg $\left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$, the ordered pair $( x , y )$ lies on the circle
$x^2+y^2+5 x-3 y+4=0 .$
Then which of the following statements is (are) TRUE?
$(A)$ $\alpha=-1$ $(B)$ $\alpha \beta=4$ $(C)$ $\alpha \beta=-4$ $(D)$ $\beta=4$
Find the modulus and argument of the complex numbers:
$\frac{1+i}{1-i}$
If $|{z_1}|\, = \,|{z_2}|$ and $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, then ${z_1} + {z_2}$ is equal to
A real value of $x$ will satisfy the equation $\left( {\frac{{3 - 4ix}}{{3 + 4ix}}} \right) = $ $\alpha - i\beta \,(\alpha ,\beta \,{\rm{real),}}$ if
If $\alpha$ and $\beta$ are different complex numbers with $|\beta|=1,$ then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$